Useful rules for differentiating sums or products of differentiable functions.
Click on an arrow to get a description of the connection!
Click on an arrow to get a description of the connection!
Show requirements
Show consequences
Now we consider rules for the derivatives of sums, products and
quotients of functions.
Theorem 1. Summation Rule,
Product Rule, Quotient Rule Let \(f,g: I\to\mathbb{R}\) be differentiable in
\(x_0\in I\).
Then \(f+g\) is
differentiable in \(x_0\) with \((f+g)'(x_0)=f'(x_0)+g'(x_0)\).
Then \(f\cdot g\) is
differentiable in \(x_0\) with \((f\cdot g)'(x_0)=f'(x_0)\cdot
g(x_0)+f(x_0)\cdot g'(x_0)\).
If \(g(x_0)\neq0\), then
\(\frac{f}g(x_0)\) is differentiable in
\(x_0\) with \[\left(\frac{f}g(x_0)\right)'(x_0)=\frac{f'(x_0)g(x_0)-f(x_0)g'(x_0)}{g^2(x_0)}.\]
Proof: Let \(f(x)=f(x_0)+(x-x_0)\cdot\Delta_{f,x_0}(x)\),
\(g(x)=g(x_0)+(x-x_0)\cdot\Delta_{g,x_0}(x)\).
Then
\[(f+g)(x)=f(x)+g(x)=(f+g)(x_0)+(x-x_0)\cdot(\Delta_{f,x_0}(x)+\Delta_{g,x_0}(x)).\]
\[\begin{aligned}
(f\cdot g)(x)=&
(f(x_0)+(x-x_0)\cdot\Delta_{f,x_0}(x_0))(g(x_0)+(x-x_0)\cdot\Delta_{g,x_0}(x))\\
=&f(x_0)g(x_0)+(x-x_0)(\Delta_{f,x_0}(x_0)g(x_0)+\Delta_{g,x_0}(x)f(x_0))\\&\quad+(x-x_0)^2\Delta_{f,x_0}(x_0)\Delta_{g,x_0}(x)
.\end{aligned}\] Thus, \[\begin{aligned}
&\lim_{x\to x_0}\frac{f(x)g(x)-f(x_0)g(x_0)}{x-x_0}\\
=&\lim_{x\to
x_0}\frac{(x-x_0)(\Delta_{f,x_0}(x)g(x_0)+\Delta_{g,x_0}(x)f(x_0))+(x-x_0)^2\Delta_{f,x_0}(x)\Delta_{g,x_0}(x)}{x-x_0}\\
=&\lim_{x\to
x_0}\left((\Delta_{f,x_0}(x_0)g(x_0)+\Delta_{g,x_0}(x)f(x_0)+(x-x_0)\Delta_{f,x_0}(x)\Delta_{g,x_0}(x)\right)\\
=&\Delta_{f,x_0}(x)g(x_0)+\Delta_{g,x_0}(x)f(x_0)
\end{aligned}\]
For convenience, we assume that \(f\equiv1\) (the general result follows by
an application of the product rule). Then \[\frac1{g(x)}-\frac1{g(x_0)}=\frac{g(x_0)-g(x)}{g(x_0)g(x)}=-\frac{(x-x_0)\Delta_{g,x_0}(x)}{g(x_0)g(x)}\]
and thus \[\lim_{x\to
x_0}\frac1{x-x_0}\left(\frac1{g(x)}-\frac1{g(x_0)}\right)=-\frac{g'(x_0)}{g^2(x_0)}.\]
\(\Box\)
Example 2.
For a constant \(c\) and
a differentiable function \(f:I\to\mathbb{R}\) we have \[(cf)'(x)=c'f(x)+cf'(x)=cf'(x).\]
Let \(n\in\mathbb{N}\) and \(f:\mathbb{R}\to\mathbb{R}, x\mapsto x^n\).
Then \(f'(x)=nx^{n-1}\).
Induction basis: \(n=1\). \(f'(x)=(1\cdot x)'\underset{a)}{=}1=1\cdot
x^{1-1}\).
Induction step: \(n>1\): Using the
product rule we immediately get \[f'(x)=(x^n)'=(x\cdot x^{n-1})' =
x'(x^{n-1})+x(x^{n-1})'\underset{\text{Ind. Hyp.}}{=}
x^{n-1}+x\cdot (n-1)x^{n-2}=nx^{n-1}\]
\(f(x)=x^{-n}=\frac1{x^n}\),
\(n\in\mathbb{N}\). Then for \(x\in\mathbb{R}\backslash\{0\}\) \[f'(x)=\frac{-nx^{n-1}}{x^{2n}}=-n\frac{1}{x^{n+1}}=-nx^{-n-1}\]
is true.
\(f(x)=x\cdot \exp(x)\). Then
for \(x\in\mathbb{R}\) \[f'(x)=1\cdot\exp(x)+x\cdot\exp(x)=(1+x)\exp(x).\]
For a real polynomial \(f(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0\)
holds \[f'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+\ldots+2a_2x+a_1.\]
Discuss your questions by typing below.