Generalisations of l'Hospital's Rule
Further scenarios in which limits can be calculated by l'Hospital's rule.
Discover Bridges #
Click on an arrow to get a description of the connection!
Click on an arrow to get a description of the connection!
Show requirements
Concept | Content |
---|---|
Theorem of l'Hospital | An important tool for calculating limits. |
Show consequences
Concept | Content |
---|
Study Generalisations of l’Hospital’s Rule #
Generalisations of l’Hospital’s Theorem
Expressions of type \(\frac\infty\infty\), Limit as \(x\to x_0\)
Let \(f,g:I\backslash\{x_0\}\to\mathbb{R}\) be differentiable functions with \(\lim_{x\to x_0}f(x)=\infty\), \(\lim_{x\to x_0}g(x)=\infty\). Then, if \(\lim_{x\to x_0}\frac{f'(x)}{g'(x)}\) exists, then also \(\lim_{x\to x_0}\frac{f(x)}{g(x)}\) exists with \[\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{f'(x)}{g'(x)}.\]Expressions of type \(\frac00\), Limit as \(x\to\infty\)
Let \(f,g:[t_0,\infty)\to\mathbb{R}\) be differentiable functions with \(\lim_{x\to \infty}f(x)=0\), \(\lim_{x\to \infty}g(x)=0\). Assume that there exists some \(x_1\in\mathbb{R}\) such that \(g'(x)\neq0\) for all \(x>x_1\). Then, if \(\lim_{x\to\infty}\frac{f'(x)}{g'(x)}\) exists, then also \(\lim_{x\to\infty}\frac{f(x)}{g(x)}\) exists with \[\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}.\]Expressions of type \(\frac\infty\infty\), Limit as \(x\to\infty\)
Let \(f,g:[t_0,\infty)\) be differentiable functions with \(\lim_{x\to \infty}f(x)=\infty\), \(\lim_{x\to \infty}g(x)=\infty\). Then, if \(\lim_{x\to\infty}\frac{f'(x)}{g'(x)}\) exists, then also \(\lim_{x\to\infty}\frac{f(x)}{g(x)}\) exists with \[\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{x\to\infty}\frac{f'(x)}{g'(x)}.\]
Proof: The first result follows by an application of l’Hospital’s Theorem to \[\lim_{x\to x_0}\frac{f(x)}{g(x)}=\lim_{x\to x_0}\frac{\frac1{g(x)}}{\frac1{f(x)}}=\lim_{x\to x_0}\frac{\frac{g'(x)}{(g(x))^2}}{\frac{f'(x)}{(f(x))^2}}=\frac1{\lim_{x\to x_0}\frac{f'(x)}{g'(x)}}\left(\lim_{x\to x_0}\frac{f(x)}{g(x)}\right)^2.\] The second and third statement follow by a substitution \(y=\frac1x\) and the consideration of \[\lim_{x\to\infty}\frac{f(x)}{g(x)}=\lim_{y\to0}\frac{f\left(\frac1y\right)}{g\left(\frac1y\right)} =\lim_{y\to0}\frac{-\frac1{y^2}f'\left(\frac1y\right)}{-\frac1{y^2}g'\left(\frac1y\right)} =\lim_{y\to0}\frac{f'\left(\frac1y\right)}{g'\left(\frac1y\right)} =\lim_{x\to\infty}\frac{f'(x)}{g'(x)}.\] \(\Box\)
Note that we can also treat expressions of type “\(\infty-\infty\)” by l’Hospitals’s Theorem. Namely, for \(f,g\) with \(\lim_{x\to x_0}f(x)=0\), \(\lim_{x\to x_0}g(x)=0\), we get that \[\lim_{x\to x_0}(\frac{1}{f(x)}-\frac{1}{g(x)})=\lim_{x\to x_0}\frac{g(x)-f(x)}{f(x)\cdot g(x)}=\lim_{x\to x_0}\frac{g'(x)-f'(x)}{f'(x)\cdot g(x)+f(x)\cdot g'(x)}.\] Also, expressions of type “\(0\cdot\infty\)” can be treated by a special trick. Namely, for \(f,g\) with \(\lim_{x\to x_0}f(x)=0\), \(\lim_{x\to x_0}g(x)=\infty\), we get that \[\lim_{x\to x_0}f(x)\cdot g(x)=\lim_{x\to x_0}\frac{f(x)}{\frac1{g(x)}}=\lim_{x\to x_0}\frac{f'(x)}{-\frac{g'(x)}{(g(x))^2}}=-\lim_{x\to x_0}\frac{f'(x) (g(x))^2}{g'(x)}.\] You do not have to keep the above two formulas in mind. These can always be derived in concrete examples.
Let \(n\in\mathbb{N}\) and consider \[\lim_{x\to\frac\pi2,x<\frac\pi2}\left(x-\frac\pi2\right)^n\cdot\tan(x).\] This is an expression of type “\(0\cdot\infty\)” and we can make use of \[\begin{aligned} \lim_{x\to\frac\pi2,x<\frac\pi2}\left(x-\frac\pi2\right)^n\cdot\tan(x)=&\lim_{x\to\frac\pi2,x<\frac\pi2}\frac{\left(x-\frac\pi2\right)^n}{\frac1{\tan(x)}}\\=& \lim_{x\to\frac\pi2,x<\frac\pi2}\frac{n\cdot\left(x-\frac\pi2\right)^{n-1}}{-\frac1{\tan^2(x)}\frac1{\cos^2(x)}}\\=& \lim_{x\to\frac\pi2,x<\frac\pi2}\frac{n\cdot\left(x-\frac\pi2\right)^{n-1}}{-\frac1{\sin^2(x)}}\\ =&-\lim_{x\to\frac\pi2,x<\frac\pi2}n\cdot\left(x-\frac\pi2\right)^{n-1}\sin^2(x)\\ =&\begin{cases}-1&\text{ if }n=1,\\0&\text{ else.}\end{cases} \end{aligned}\]
In this example, we first need to bring both terms into a common fraction \[\begin{aligned}\lim_{x\to0}\left(\frac1{\sin(x)}-\frac1x\right)=& \lim_{x\to0}\frac{x-\sin(x)}{x\sin(x)}\\=& \lim_{x\to0}\frac{1-\cos(x)}{\sin(x)+x\cos(x)}\\=& \lim_{x\to0}\frac{\sin(x)}{\cos(x)-x\sin(x)+\cos(x)}=0. \end{aligned}\]
Discuss your questions by typing below.
Solve the WeBWorK Exercise #
The data for the interactive network on this webpage was generated with pntfx Copyright Fabian Gabel and Julian Großmann. pntfx is licensed under the MIT license. Visualization of the network uses the open-source graph theory library Cytoscape.js licensed under the MIT license.