Riemann Integral for Bounded Functions
Notion of integral for a large class of functions.
Discover Bridges #
Click on an arrow to get a description of the connection!
Click on an arrow to get a description of the connection!
Show requirements
Concept | Content |
---|---|
Riemann Integral for Step Functions | A notion of integral for a simple class of functions. |
Show consequences
Concept | Content |
---|---|
Substitution Rule for Integration | An important integration rule. |
Properties of the Riemann Integral | Important properties of the Riemann integral of bounded functions. |
Integration by Parts | An important integration rule. |
Examples for Calculating the Riemann Integral | Use the approximation by step functions to calculate integrals. |
Second Fundamental Theorem of Calculus | Characterization of all antiderivatives |
Improper Riemann Integrals | How to integrate on unbounded domains. |
Study Riemann Integral for Bounded Functions #
Now we will define the integral for bounded functions:
Definition 1. Let \(f:[a,b]\to\mathbb{R}\) be bounded. Then we define the Riemann upper integral \[\overline{\int_a^b}f(x)\, dx:=\inf\left\{\int_a^b\phi(x)\, dx\;:\;\phi\in\mathcal{T}([a,b])\text{ with }\phi\geq f\right\}\] and the Riemann lower integral by \[\underline{\int_a^b}f(x)\, dx:=\sup\left\{\int_a^b\phi(x)\, dx\;:\;\phi\in\mathcal{T}([a,b])\text{ with }\phi\leq f\right\}.\]
It can be seen from the figures above that the integral can be seen as the signed area between the function graph and the \(x\)-axis. Signed means that the area of the negative parts of the function has to be counted negative.
By the above definition, we can directly deduce that for \(\phi\in\mathcal{T}([a,b])\) holds \[\overline{\int_a^b}\phi(x)\, dx=\underline{\int_a^b}\phi(x)\, dx={\int_a^b}\phi(x)\, dx.\]
For general bounded functions \(f:[a,b]\to\mathbb{R}\) holds \[\underline{\int_a^b}f(x)\, dx\leq \overline{\int_a^b}f(x)\, dx.\] Note that in general the upper integral does not coincide with the lower integral. For instance, consider the function \(f: [0,1] \to\mathbb{R}\) with \[f(x)=\begin{cases}1&:\;x\in\mathbb{Q}\\0&:x\in\mathbb{R}\backslash\mathbb{Q}\end{cases}\] Then we have \[\overline{\int_0^1}f(x)\, dx=1>0=\underline{\int_0^1}f(x)\, dx.\]
Theorem 2. Let \(f,g:[a,b]\to\mathbb{R}\) be bounded. Then
\[\overline{\int_a^b}f(x)+g(x)\, dx\leq \overline{\int_a^b}f(x)\, dx+\overline{\int_a^b}g(x)\, dx.\]
\[\underline{\int_a^b}f(x)+g(x)\, dx\geq \underline{\int_a^b}f(x)\, dx+\underline{\int_a^b}g(x)\, dx.\]
For \(\lambda\geq0\) holds \[\underline{\int_a^b}\lambda f(x)\, dx=\lambda \underline{\int_a^b}f(x)\, dx,\quad\overline{\int_a^b}\lambda f(x)\, dx=\lambda \overline{\int_a^b}f(x)\, dx.\]
For \(\lambda\leq0\) holds \[\underline{\int_a^b}\lambda f(x)\, dx=\lambda \overline{\int_a^b}f(x)\, dx,\quad\overline{\int_a^b}\lambda f(x)\, dx=\lambda \underline{\int_a^b}f(x)\, dx.\]
Proof:
(i) Let \(\varepsilon>0\). Then
there exist \(\phi,\psi\in\mathcal{T}([a,b])\) with \(\phi\geq f\), \(\psi\geq g\) and \[\overline{\int_a^b}f(x)\,
dx+\frac\varepsilon2\geq{\int_a^b}\phi(x)\, dx,\qquad
\overline{\int_a^b}g(x)\, dx+\frac\varepsilon2\geq{\int_a^b}\psi(x)\,
dx.\] Then \(f+g\leq\phi+\psi\)
and \[\begin{aligned}
\overline{\int_a^b}f(x)+g(x)\, dx=&\inf\left\{\int_a^b\zeta(x)\,
dx\;:\; \zeta\in\mathcal{T}([a,b])\text{ with }\zeta\geq f+g\right\}\\
\leq& {\int_a^b}\phi(x)+\psi(x)\, dx\\ \leq&
\left(\overline{\int_a^b}f(x)\,
dx+\frac\varepsilon2\right)+\left(\overline{\int_a^b}g(x)\,
dx+\frac\varepsilon2\right)\\=&
\overline{\int_a^b}f(x)\, dx+\overline{\int_a^b}g(x)\, dx+\varepsilon.
\end{aligned}\] Since this holds true for all \(\varepsilon>0\), we conclude \[\overline{\int_a^b}f(x)+g(x)\,
dx\leq\overline{\int_a^b}f(x)\, dx+\overline{\int_a^b}g(x)\,
dx.\] (ii): Analogous to (i).
(iii): We only show the statement for the upper integral. The other
result can be shown analogously.
Let \(\varepsilon>0\). Then there
exists some \(\phi\in\mathcal{T}([a,b])\) with \(\phi\geq f\) and \[\overline{\int_a^b}f(x)\,
dx+\varepsilon\geq{\int_a^b}\phi(x)\, dx.\] Then \(\lambda \phi\geq\lambda f\) and \[\overline{\int_a^b} \lambda f(x)\,
dx\leq{\int_a^b}\lambda\phi(x)\, dx=\lambda{\int_a^b}\phi(x)\, dx\leq
\lambda\overline{\int_a^b} f(x)\, dx+\lambda\varepsilon.\] Since
this holds true for all \(\varepsilon>0\), we conclude \[\overline{\int_a^b}\lambda f(x)\, dx\leq\lambda
\overline{\int_a^b}f(x)\, dx.\] The opposite inequality follows
from the previous one applied to \(g(x):=\lambda f(x)\) and \(\mu:=\frac{1}{\lambda}>0\): \[\overline{\int_a^b} f(x)\, dx
= \overline{\int_a^b} \mu g(x)\, dx \leq \mu \overline{\int_a^b}g(x)\,
dx = \frac{1}{\lambda} \overline{\int_a^b}\lambda f(x)\, dx.\]
Multiplying this inequality by \(\lambda>0\) yields \[\lambda \overline{\int_a^b} f(x)\, dx \leq
\overline{\int_a^b}\lambda f(x)\, dx.\]
(iv): This result can be shown by using (iii) and the fact \[\overline{\int_a^b}-f(x)\, dx=-\underline{\int_a^b}f(x)\, dx.\] \(\Box\)
Definition 3. A bounded function \(f:[a,b]\to\mathbb{R}\) is called Riemann-integrable if \[\overline{\int_a^b}f(x)\, dx=\underline{\int_a^b}f(x)\, dx.\] In this case, we write \[{\int_a^b}f(x)\, dx=\underline{\int_a^b}f(x)\, dx.\] The set of Riemann-integrable functions is denoted by \(\mathcal{R}([a,b])\).
We obviously have that \(\mathcal{T}([a,b])\subset\mathcal{R}([a,b])\). In the following we state that monotonic functions as well as continuous functions are Riemann-integrable. The proof is not presented here.
Remark 4. As it holds true for summation, the integration variable can be renamed without changing the integral. That is, for \(f\in\mathcal{R}([a,b])\) holds \[{\int_a^b}f(x)\, dx={\int_a^b}f(t)\, dt.\]
Theorem 5. Let \(f:[a,b]\to\mathbb{R}\) be continuous or monotonic. Then \(f\) is Riemann-integrable.
The following result is straightforward:
Theorem 6. \(\mathcal{R}([a,b])\) is a real vector space and the mapping \[\int_a^b\;:\;\mathcal{R}([a,b])\to\mathbb{R}\] is linear and monotonic.
Discuss your questions by typing below.
Solve the Exercise #
The data for the interactive network on this webpage was generated with pntfx Copyright Fabian Gabel and Julian Großmann. pntfx is licensed under the MIT license. Visualization of the network uses the open-source graph theory library Cytoscape.js licensed under the MIT license.