Integration by Parts
An important integration rule.
Discover Bridges #
Click on an arrow to get a description of the connection!
Click on an arrow to get a description of the connection!
Show requirements
| Concept | Content |
|---|---|
| Sum and Product Rule | Useful rules for differentiating sums or products of differentiable functions. |
| Riemann Integral for Bounded Functions | Notion of integral for a large class of functions. |
Show consequences
| Concept | Content |
|---|
Study Integration by Parts #
In this part we integrate products of functions.
Theorem 1 (Integration by Parts). Let \(I\) be an Interval and \(f,g:I\to\mathbb{R}\) be differentiable. Then for \(a,b\in I\) holds \[\int_a^bf'(x)g(x)dx=\left.f(x)g(x)\right|_{x=a}^{x=b}-\int_a^bf(x)g'(x)dx.\]
Proof: The product rule of differentiation implies \[(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\] and thus \[\begin{aligned} &\left.f(x)g(x)\right|_{x=a}^{x=b}=\int_a^b(f(x)g(x))'dx\\=&\int_a^bf'(x)g(x)+f(x)g'(x)dx= \int_a^bf'(x)g(x)dx+\int_a^bf(x)g'(x)dx.\end{aligned}\] Solving this equation for \(\int_a^bf'(x)g(x)dx\), we get the desired equation.\(\Box\)
Example 2.
For \(a,b\in\mathbb{R}\), determine \[\int_a^bx\exp(x)dx.\] We use integration by parts with \(f'(x)=f(x)=\exp(x)\) and \(g(x)=x\). Then \[\begin{aligned} \int_a^b\exp(x)xdx=&\left.x\exp(x)\right|_{x=a}^{x=b}-\int_a^b\exp(x)dx\\ =&\left.x\exp(x)\right|_{x=a}^{x=b}-\left.\exp(x)\right|_{x=a}^{x=b}\\=&\left.(x-1)\exp(x)\right|_{x=a}^{x=b}. \end{aligned}\] It is very important to note that an unlucky choice of \(f\) and \(g\) may be misleading. For instance, if we choose \(f'(x)=x\) and \(g(x)=\exp(x)\). Then integration by parts gives \[\int_a^bx\exp(x)dx=\left.\frac12x^2\exp(x)\right|_{x=a}^{x=b}-\int_a^b\frac12x^{2}\exp(x)dx.\] This formula is mathematically correct, but it does not lead to the explicit determination of the integral.
Integrate \(\sin(x)\cos(x)\): \[\begin{aligned} &\int_a^b\underbrace{\sin(x)}_{f'(x)=-\cos'(x)}\underbrace{\cos(x)}_{=g(x)}dx\\=&\left.-\cos^2(x)\right|_{x=a}^{x=b}-\int_a^b(-\cos(x))(-\sin(x))dx\\ =&\left.-\cos^2(x)\right|_{x=a}^{x=b}-\int_a^b\cos(x)\sin(x)dx. \end{aligned}\] Solving this equation for \(\int_a^b\sin(x)\cos(x)dx\), we obtain \[\int_a^b\sin(x)\cos(x)dx=\left.-\frac12\cos^2(x)\right|_{x=a}^{x=b}.\]
For \(a,b\in(0,\infty)\) and \(\lambda\in\mathbb{R}\backslash\{-1\}\), determine the integral \[\int_a^bx^\lambda\log(x)dx.\] Defining \(f(x)=\frac1{\lambda+1}x^{\lambda+1}\), \(g(x)=\log(x)\), integration by parts leads to \[\begin{aligned} &\int_a^bx^\lambda\log(x)dx\\ =&\left.\frac1{\lambda+1}x^{\lambda+1}\log(x)\right|_{x=a}^{x=b}-\int_a^b\frac1{\lambda+1}x^{\lambda+1}\frac1xdx\\ =&\left.\frac1{\lambda+1}x^{\lambda+1}\log(x)\right|_{x=a}^{x=b}-\int_a^b\frac1{\lambda+1}x^{\lambda}dx\\ =&\left.\frac1{\lambda+1}x^{\lambda+1}\log(x)\right|_{x=a}^{x=b}-\left.\frac1{(\lambda+1)^2}x^{\lambda+1}\right|_{x=a}^{x=b}\\ =&\left.\frac1{\lambda+1}x^{\lambda+1}\left(\log(x)-\frac1{\lambda+1}\right)\right|_{x=a}^{x=b}. \end{aligned}\]
For \(a,b\in(0,\infty)\), determine the integral \[\int_a^b\frac{\log(x)}xdx.\] Defining \(f(x)=g(x)=\log(x)\), integration by parts leads to \[\int_a^b\frac{\log(x)}xdx =\left.\log^2(x)\right|_{x=a}^{x=b}-\int_a^b\frac{\log(x)}xdx.\] Solving this for \(\int_a^b\frac{\log(x)}xdx\), we obtain \[\int_a^b\frac{\log(x)}xdx =\frac12\left.\log^2(x)\right|_{x=a}^{x=b}.\]
Discuss your questions by typing below.
Solve the WeBWorK Exercise #
The data for the interactive network on this webpage was generated with pntfx Copyright Fabian Gabel and Julian Großmann. pntfx is licensed under the MIT license. Visualization of the network uses the open-source graph theory library Cytoscape.js licensed under the MIT license.
