An important integration rule.
Click on an arrow to get a description of the connection!
Click on an arrow to get a description of the connection!
Show requirements
Show consequences
In this part we integrate products of functions.
Theorem 1 (Integration by Parts). Let \(I\) be an Interval and \(f,g:I\to\mathbb{R}\) be differentiable.
Then for \(a,b\in I\) holds \[\int_a^bf'(x)g(x)dx=\left.f(x)g(x)\right|_{x=a}^{x=b}-\int_a^bf(x)g'(x)dx.\]
Proof: The product rule of differentiation
implies \[(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\]
and thus \[\begin{aligned}
&\left.f(x)g(x)\right|_{x=a}^{x=b}=\int_a^b(f(x)g(x))'dx\\=&\int_a^bf'(x)g(x)+f(x)g'(x)dx=
\int_a^bf'(x)g(x)dx+\int_a^bf(x)g'(x)dx.\end{aligned}\]
Solving this equation for \(\int_a^bf'(x)g(x)dx\), we get the
desired equation.\(\Box\)
Example 2.
For \(a,b\in\mathbb{R}\),
determine \[\int_a^bx\exp(x)dx.\] We
use integration by parts with \(f'(x)=f(x)=\exp(x)\) and \(g(x)=x\). Then \[\begin{aligned}
\int_a^b\exp(x)xdx=&\left.x\exp(x)\right|_{x=a}^{x=b}-\int_a^b\exp(x)dx\\
=&\left.x\exp(x)\right|_{x=a}^{x=b}-\left.\exp(x)\right|_{x=a}^{x=b}\\=&\left.(x-1)\exp(x)\right|_{x=a}^{x=b}.
\end{aligned}\] It is very important to note that an unlucky
choice of \(f\) and \(g\) may be misleading. For instance, if we
choose \(f'(x)=x\) and \(g(x)=\exp(x)\). Then integration by parts
gives \[\int_a^bx\exp(x)dx=\left.\frac12x^2\exp(x)\right|_{x=a}^{x=b}-\int_a^b\frac12x^{2}\exp(x)dx.\]
This formula is mathematically correct, but it does not lead to the
explicit determination of the integral.
Integrate \(\sin(x)\cos(x)\):
\[\begin{aligned}
&\int_a^b\underbrace{\sin(x)}_{f'(x)=-\cos'(x)}\underbrace{\cos(x)}_{=g(x)}dx\\=&\left.-\cos^2(x)\right|_{x=a}^{x=b}-\int_a^b(-\cos(x))(-\sin(x))dx\\
=&\left.-\cos^2(x)\right|_{x=a}^{x=b}-\int_a^b\cos(x)\sin(x)dx.
\end{aligned}\] Solving this equation for \(\int_a^b\sin(x)\cos(x)dx\), we obtain \[\int_a^b\sin(x)\cos(x)dx=\left.-\frac12\cos^2(x)\right|_{x=a}^{x=b}.\]
For \(a,b\in(0,\infty)\) and
\(\lambda\in\mathbb{R}\backslash\{-1\}\),
determine the integral \[\int_a^bx^\lambda\log(x)dx.\] Defining
\(f(x)=\frac1{\lambda+1}x^{\lambda+1}\),
\(g(x)=\log(x)\), integration by parts
leads to \[\begin{aligned}
&\int_a^bx^\lambda\log(x)dx\\
=&\left.\frac1{\lambda+1}x^{\lambda+1}\log(x)\right|_{x=a}^{x=b}-\int_a^b\frac1{\lambda+1}x^{\lambda+1}\frac1xdx\\
=&\left.\frac1{\lambda+1}x^{\lambda+1}\log(x)\right|_{x=a}^{x=b}-\int_a^b\frac1{\lambda+1}x^{\lambda}dx\\
=&\left.\frac1{\lambda+1}x^{\lambda+1}\log(x)\right|_{x=a}^{x=b}-\left.\frac1{(\lambda+1)^2}x^{\lambda+1}\right|_{x=a}^{x=b}\\
=&\left.\frac1{\lambda+1}x^{\lambda+1}\left(\log(x)-\frac1{\lambda+1}\right)\right|_{x=a}^{x=b}.
\end{aligned}\]
For \(a,b\in(0,\infty)\),
determine the integral \[\int_a^b\frac{\log(x)}xdx.\] Defining
\(f(x)=g(x)=\log(x)\), integration by
parts leads to \[\int_a^b\frac{\log(x)}xdx
=\left.\log^2(x)\right|_{x=a}^{x=b}-\int_a^b\frac{\log(x)}xdx.\]
Solving this for \(\int_a^b\frac{\log(x)}xdx\), we obtain
\[\int_a^b\frac{\log(x)}xdx
=\frac12\left.\log^2(x)\right|_{x=a}^{x=b}.\]
Discuss your questions by typing below.