Improper Riemann Integrals
How to integrate on unbounded domains.
Discover Bridges #
Click on an arrow to get a description of the connection!
Click on an arrow to get a description of the connection!
Show requirements
Concept | Content |
---|---|
Riemann Integral for Bounded Functions | Notion of integral for a large class of functions. |
Limits of Functions | How function evaluations change when the argument approaches a certain point. |
Show consequences
Concept | Content |
---|---|
Integral Comparison Test | Compare improper Riemann integrals to infinite series. |
Study Improper Riemann Integrals #
So far, we have integrated bounded functions on compact intervals \([a,b]\). In this part we skip these two assumptions by extending the integral notion to functions that may have a pole and/or are defined on unbounded intervals.
Unbounded Interval
Definition 1 (Integration on unbounded intervals). Let \(f:[a,\infty)\to\mathbb{R}\) be a function with the property that for all \(b>a\) the restriction of \(f\) to \([a,b]\) belongs to \(\mathcal{R}([a,b])\). If \[\lim_{b\to\infty}\int_a^bf(x)dx\] exists, then we say that \[\int_a^\infty f(x)dx\] is convergent. Otherwise, we speak of divergence.
Example 2.
For integrating the function \(\exp(-x)\) on the interval \([0,\infty)\), we compute \[\begin{aligned} \int_0^\infty\exp(-x)dx=&\lim_{b\to\infty}\int_0^b\exp(-x)dx\\=&\lim_{b\to\infty}\left.-\exp(-x)\right|_{x=0}^{x=b}\\ =&1-\lim_{b\to\infty}\exp(-b)=1. \end{aligned}\]
For \(\alpha>0\), consider \[\int_1^\infty \frac1{x^\alpha}dx.\] We know that for \(b>1\) holds \[\int_1^b\frac1{x^\alpha}dx=\begin{cases}\left.\frac1{1-\alpha}\frac1{x^{\alpha-1}}\right|_{x=1}^{x=b}&:\alpha\neq1,\\\left.\log(x)\right|_{x=1}^{x=b}&:\alpha=1. \end{cases}\] Since \(\lim_{b\to\infty}\log(b)=\infty\) and \[\lim_{b\to\infty}\frac1{x^{\alpha-1}}=\begin{cases}0&:\alpha>1,\\\infty&:\alpha<1,\end{cases}\] we have \[\int_1^\infty \frac1{x^\alpha}dx=\begin{cases}\frac1{\alpha-1}&:\alpha>1,\\\infty&:\alpha\leq1.\end{cases}\]
It is straightforward to define the integral of a function defined on some interval unbounded from below by \[\int_{-\infty}^af(x)dx=\lim_{b\to-\infty}\int_{b}^af(x)dx.\] We now define the integral of functions defined on the whole real axis.
Definition 3. Let \(f:\mathbb{R}\to\mathbb{R}\) be a function with the property that for all \(a,b\in\mathbb{R}\) the restriction of \(f\) to \([a,b]\) belongs to \(\mathcal{R}([a,b])\). If there exists some \(c\in\mathbb{R}\) such that both integrals \[\int_c^\infty f(x)dx,\qquad \int_{-\infty}^c f(x)dx\] exist, then we say that \[\int_{-\infty}^\infty f(x)dx\] is convergent. Otherwise, we speak of divergence. In case of convergence we set \[\int_{-\infty}^\infty f(x)dx=\int_{-\infty}^c f(x)dx+\int_c^\infty f(x)dx.\]
We remark without proof that the above definition is independent of \(c\).
Example 4.
Consider \[\begin{aligned} \int_{-\infty}^\infty\frac1{1+x^2}dx=& \int_{-\infty}^0\frac1{1+x^2}dx+\int_0^\infty \frac1{1+x^2}dx\\ =&\lim_{a\to-\infty}\int_{a}^0\frac1{1+x^2}dx+\lim_{b\to\infty}\int_{0}^b\frac1{1+x^2}dx\\ =&\lim_{a\to-\infty}\left.\arctan(x)\right|_{x=a}^{x=0}+\lim_{b\to\infty}\left.\arctan(x)\right|_{x=0}^{x=b}\\ =&-\lim_{a\to-\infty}\arctan(a)+\lim_{b\to\infty}\arctan(b)\\ =&\frac\pi2+\frac\pi2=\pi. \end{aligned}\]
The integral \[\int_{-\infty}^\infty xdx\] diverges since both integrals \[\begin{aligned} \int_{-\infty}^0 xdx&=\lim_{a\to-\infty}\int_{a}^0 xdx=\lim_{a\to-\infty}\left.\frac12x^2\right|_{x=a}^{x=0}=-\infty\\ \int_{0}^\infty xdx&=\lim_{b\to\infty}\int_{0}^b xdx=\lim_{b\to\infty}\left.\frac12x^2\right|_{x=0}^{x=b}=\infty \end{aligned}\] diverge. This example shows that the convergence of \(\int_{-\infty}^\infty f(x)dx\) is not equivalent to the existence of the limit \[\lim_{a\to\infty}\int_{-a}^af(x)dx.\] However, in case of convergence, the integral \(\int_{-\infty}^\infty f(x)dx\) coincides with the above limit.
The majorant criterion for series says that if the absolut values of the addends of a given series can be bounded from above by the addends of a convergent series, then (absolut) convergence of the given series can be concluded.
Conversely, the minorant criterion for series says that if the addends of a given series can be bounded from below by the addends of a series that diverges to \(+\infty\), then also the given series diverges to \(+\infty\).
Analogue criteria hold true for integrals. We skip the proofs since they are totally analogous to those of the majorant and minorant criteria.
Theorem 5. Let \(f,g:[a,\infty)\to\mathbb{R}\) such that for all \(b\in [a,\infty)\), the restrictions of \(f\) and \(g\) to \([a,b]\) are Riemann-integrable.
If \(|f(x)|\leq g(x)\) for all \(x\in [a,\infty)\) and \(\int_{a}^\infty g(x)dx\) converges, then also \(\int_{a}^\infty f(x)dx\) converges and it holds that \[\left|\int_{a}^\infty f(x)dx\right|\leq \int_{a}^\infty |f(x)|dx\leq \int_{a}^\infty g(x)dx.\]
If \(g(x)\leq f(x)\) for all \(x\in [a,\infty)\) and \(\int_{a}^\infty g(x)dx=+\infty\), then \(\int_{a}^\infty f(x)dx=+\infty\).
Example 6.
Consider \[\int_1^\infty\frac{x}{x^2+1}dx.\] We have \[\lim_{x\to\infty}x\cdot\frac{x}{x^2+1}=1.\] For large enough \(x\in\mathbb{R}\), we therefore have \[\left|x\cdot\frac{x}{x^2+1}\right|=\frac{x^2}{x^2+1}\geq\frac12\] and thus \[\frac{x}{x^2+1}\geq\frac1{2x}.\] Since \[\int_1^\infty\frac{1}{2x}dx\] is divergent, \[\int_1^\infty\frac{x}{x^2+1}dx\] is divergent, too.
Consider \[\int_1^\infty\frac{\sqrt{x}}{x^2+1}dx.\] We have \[\lim_{x\to\infty}x^{3/2}\cdot\frac{\sqrt{x}}{x^2+1}=1.\] For large enough \(x\in\mathbb{R}\), we therefore have \[\left|x^{3/2}\cdot\frac{\sqrt{x}}{x^2+1}\right|=\frac{x^2}{x^2+1}\leq2\] and thus \[\frac{\sqrt{x}}{x^2+1}\leq\frac2{x^{3/2}}.\] Since \[\int_1^\infty\frac2{x^{3/2}}dx\] is convergent, so \[\int_1^\infty\frac{\sqrt{x}}{x^2+1}dx\] is convergent, too.
Discuss your questions by typing below.
Solve the WeBWorK Exercise #
The data for the interactive network on this webpage was generated with pntfx Copyright Fabian Gabel and Julian Großmann. pntfx is licensed under the MIT license. Visualization of the network uses the open-source graph theory library Cytoscape.js licensed under the MIT license.